〈研究ノート〉

リアルタイム画像認識を行うAIカーの設計と実装についての研究 —NVIDIA Jetson nanoを利用したJetBotの画像認識メカニズム—

野津伸治1

Shinji Notsu : A Study of Design and Implementation an AI Car Which Can Image-recognize the Direction by Using Camera

AI (Artificial Intelligence)を活用する分野のひとつに画像認識がある.このための学習と推論 のメカニズムの理解は重要である.これを自律走行カーのリアルタイム制御として実装する.情報 科学分野専攻の短期大学生のグループ PBL の教材として利用するための AI カーの設計と実装の 研究である.

キーワード: AI カー 画像認識 JetBot Jetson nano

はじめに

AI の理論と製品化の進展にはこの 10 年目覚まし いものがある.音声認識や画像認識などの分野で新 たな手法が数多く提案され、それらはスマートフォ ンや自動車の自動運転など様々な製品に実装されて いる. AI における学習もクラウド上のサービスか らエッジでの実行まで様々に存在する.特に AI や データサイエンス分野で優れたライブラリーが存在 するプログラミング言語 Python はよく用いられる.

Python を利用してリアルタイム画像認識を行う題 材として NVIDIA 社の提案する JetBot¹⁾やJetRacer²⁾ はエッジ AI コンピュータの Jetson nano³⁾をベースと し,高解像度カメラでの走行コース認識と車体を DC モータで制御する AI カーである.前者は走行スピー ドも相対的に低速で推論やそれに基づく挙動も低速 であるが,後者は数倍の速度でコース認識と推論を 行い,駆動部の制御も高速である.

鳥取短期大学でのコンピュータや AI の全体像を学

ぶコースの題材としては、メカニカルな部分と電子 的な部分のハードウェアと、学習や推論を司るソフ トウェアを総合的に学べる好都合の題材である。任 意のコースを設定して、数名でのグループで完走す るまでリアルタイム画像認識の競技を行うことを計 画した。

1. AI カーのハードウェア

コースのリアルタイム画像認識をして自動走行す る AI カーのハードウェア構成は、CPU として NVIDIA 社の Jetson nanoを、コース識別のカメラ、 車体の駆動部として左右の DC モータ・ギアボック ス・タイヤ、稼働状態を簡易表示する OLED 表示 ユニット、学習データ等のやり取りのための WiFi ユニットから成り立つ. これらの全体像を表したも のが図1である.

この中でも特にエッジ部分のハードウェアの構成 を図示したものが図2である.

(1) NVIDIA 社 Jetson nano

GPUを搭載してAI演算で有効な並列計算ユ

¹ 鳥取短期大学生活学科

図 1. JetBot のシステム概要

図 2. JetBot の Hardware 構成

ニットが利用できるため,NVIDIA 社の Jetson nano はエッジ AI として組み込み系システムでよ く利用されるようになってきた.Jetson nanoの仕 様は表1である.

Jetson nanoのJ41 ヘッダーGPIO ピンのレイア ウトは表2のとおりである.

なお、ソフトウェアレベルで Raspberry Piの GPIO ピンと互換性を保って利用することができ る. この GPIO に DC モータ制御を行うパーツや OLED などを接続する.

(2) PWM コントローラ PCA9685

Jetson nano から DC モータ,サーボモータ,ディ スプレイなどを制御する場合に I2C 通信方式を用い るために PCA9685 を利用する. なお, Jetson nano とこの PCA9685 の結線は表 3 のとおりである.

(3) DC モータコントローラ TB6612

DCモータの正転・逆転・ブレーキ・ストップを PWM (Pulse Width Modulator) で制御するために 1 デバイスで2モータ制御できる TB6612 を利用す る. PCA9685 とこの TB6612 の結線は表4のとお りである. なお、PCA9685 と TB6612 をひとつの HAT (Hardware Attached on Top) で実装したも のを用いることが可能である.

(4) 有機 EL ディスプレイ (OLED)

有機 EL ディスプレイは, 0.9 インチで 128×32

GPU	128-core Maxwell	
CPU	Quad-core ARM A57@1.43GHz	
Memory	4GB 64bit- LPDDR4 25.6GB/s	
Storage	microSD	
Video Encoder	4K@30 , 4x 1080p@30 , 9x 720p@30 (H.264/H.265)	
Video Decoder	4K@60 , 2x 4K@30 , 8x 1080p@30 , 18x 720p@30 (H.264/H.265)	
Camera	2x MIPI CSI-2 DPHY lans	
Connectivity	Gigabit Ethernet , M.2 Key.E	
Display	HDMI 2.0 and eDP 1.4	
USB	3x USB 3.0 , USB 2.0 Micro-B	
Others	GPIO , I2C , I2S , SPI , UART	
Mechanical	100 mm x 80 mm x 29mm	

表 1. NVIDIA Jetson nano B01 の仕様

表 2. NVIDIA Jetson nano J41 Header GPIO Pin layout

Pi GPIO	Sysfs GPIO	Name	Pin	Pin	Name	Sysfs GPIO	Pi GPIO
		+3.3V	1	2	+5V		
2		SDA1 (I2C Bus1)	3	4	+5V		
3		SCL1 (I2C Bus1)	5	6	GND		
4	gpio216	AUDIO_MCLK	7	8	TXD0		14
		GND	9	10	RXD0		15
17	gpio50	UART2_RTS	11	12	DAP4_SCLK	gpio79	18
27	gpio14	SPI2_SCK	13	14	GND		
22	gpio194	LCD_TE	15	16	SPI2_CS1	gpio232	23
		+3.3V	17	18	SPI2_CS0	gpio15	24
10	gpio16	SPI_MOSI	19	20	GND		
9	gpio17	SPI_MOSO	21	22	SPI2_MISO	gpio13	25
11	gpio18	SPI_SCLK	23	24	SPI1_CS0	gpio19	8
		GND	25	26	SPI1_CS1	gpio20	7
(0)		ID_SD (I2C Bus2)	27	28	ID_SCL (I2C Bus0)		(1)
5	gpio149	CAM_AF_EN	29	30	GND		
6	gpio200	GPIO_PZ0	31	32	LCD_BL_PWM	gpio168	12
13	gpio38	GPIO_PE6	33	34	GND		
19	gpio76	DAP4_FS	35	36	UART2_CTS	gpio51	16
26	gpio12	SPI2_MOSI	37	38	DAP4_DIN	gpio77	20
		GND	39	40	DAP4_DOUT	gpio78	21

ドット表示できるものを用意して、無線LANの IPアドレスや RAMの使用量,microSDカードの 使用量を表示させる.ディスプレイと Jetson nano は I2C 通信デバイスとして接続する(表5).その ために SDA (Serial Data),SCL (Serial Clock),デ バイスの電源として 3.3V と GND の4本のケーブ ルを接続する.

(5) カメラモジュール (Raspberry Pi Camera Module V2)

Jetson nanoの MIPI CSI 端子に接続できるカメ ラモジュールで画像認識に用いるため静止画像で 1080 p(1920×1080)の画質で撮りうる 800 万画素 のセンサーのものを用いる(表6). また AI カーが 動き回りながら静止画像を撮るので 160 度の視野角 のあるユニットとして Raspberry Pi 専用カメラモ ジュールである Raspberry Pi Camera Module V2

Jetso	PCA9685	
物理ピン番号	機能	機能
1	3.3V DC	Vcc
3	I2C_2_SDA	SDA
5	I2C_2_SCL	SCL
9	GND	GND

表 3. Jetson Nano GPIO と PCA9685 の結線

表 4. PCA9685 と TB6612 の結線

PCA9685	TB6612
機能	機能
Vcc	Vcc
GND	GND
PWM8	PWMA
PWM9	AIN2
PWM10	AIN1
PWM11	BIN1
PWM12	BIN2
PWM13	PWMB

表 5. Jetson nano GPIO と 0.9" OLED-128 × 32 の結線

Jetson nano	OLED
機能	機能
3.3V DC	Vcc
I2C_2_SDA	SDA
I2C_2_SCL	SCL
GND	GND

表 6. Raspberry Pi Camera Module V2 の仕様

Interface	CSI
IC	Sony IMX219
静止画解像度	8メガピクセル
	1080p (1920x1080) / 30fps
解像度/フレームレート	720p (1280x720) / 60fps
	480p (640x480) / 90fps
外形寸法	25(W)x24(D)x9(H)mm
質量(本体のみ)	5g
動作温度	0∼70°C

を Jetson nano で用いる.

(6) WiFi モジュール

ARM 版 Ubuntu 18.04 LTS 側で WiFi モジュール の標準ドライバで稼働するものは Intel 8265NGW が あるので, Jetson nano 側の M.2 スロットに装着す る. 更に外付けアンテナを2本接続する. なお, こ のモジュールは IEEE8021.11ac と Bluetooth 4.2 の 通信機能を持っている.

(7) 電源ユニット

電源ユニットとしては、リチウムイオン電池 (18650)はDC3.7V、3,000mAhの仕様のものを直 列で接続する.これを Jetson nano本体へのDC5.0V の給電とDCモータへの3.3Vの給電を行うことにす る.それぞれ降圧コンバータ(DC7.4VからDC5.0V へ,DC7.4VからDC3.3Vへ)を用意する.

(8) 車体フレーム

車体フレームを 3D プリンタで自作することが可 能である. そのための stl データが JetBot 公式の Github (https://github.com/NVIDIA-AI-IOT/ jetbot) で公開されている.

2. AI カーのソフトウェア

エッジ側の Jetson nanoの CPUである Tegra 用 OS としては ARM 版 Ubuntu 18.04 LTS がある. これ に AI ツールや各種ドライバを包含した SDK(Software Development Kit)を NVIDIA 社が JetPack として提 供している (https://developer.nvidia.com/jetsonnano-sd-card-image). さらにミドルウェアの ROS (Robot Operating System)を追加したものを JetBot として提供されている (https://drive.google.com/ file/d/1008 RPDRZuDloP_o76tCoSngvq 1 CVuCDh/ view?usp=sharing). これらを図示したものが図 3 で ある.

また, リモートで操作する側のソフトウェア構成 を表したものが図4である. 基本的にOSには依存 せず ssh クライアントと Web ブラウザが動作する ことで開発と操作が行える. ただし, ワイヤレス・ ゲームパッド (要X mode 設定) での操作を行う場 合はそのドライバの制約から Windows10 が必要で ある.

ssh client (Eg. TeraTerm)

Operating System (Eg. Windows10, macOS 11)

図 4. Remote Device の Software 構成

3. 設定

(1) JetBot イメージを 128GB microSD へ書込

Web Bowser (Eg. Chrome)

ダウンロードした JetBot のイメージファイルは SD Formatter で フォーマットした 128GBの mircoSDXC カードに Etcher を使って書き込む. また Ubuntu で起動後 Gparted を使ってパーティ ションをイメージファイルの 32GB から 128GBの ディスク全体を利用できるように変更する.

(2) WiFi アクセスポイントへの接続

鳥取短期大学のWiFiアクセスポイント (SSID=Cygnus) への接続には、EPA方式で 「PEAP」を,フェーズ2認証で「MSCHAPV2」を, 「CA 証明書を検証しない」に,それぞれ設定する 必要がある.

(3) OSと各種アプリの更新

最初の設定のみモニタとキーボード,マウスを接 続して行うが,その後はこれらを外したヘッドレス モードでリモート操作を行う.操作する側は,例え ば Windows 10 の場合 TeraTerm などで ssh 接続 を行う.システムを最新版に更新するために sudo apt update をしてから sudo apt upgrade を行い, sudo shutdown -r now を行う.

ダウンロードとインストールを反映するために再起 動後 sudo apt dist-upgrade を実行してから再度リ ブートする. その後に sudo apt install nvidia-jetpack をしてから sudo apt show nvidia-jetpack –a で現状 を確認できる.

(4) ヘッドレスモードの JetBot をリモート操作

リモート操作される側の JetBot はバッテリ駆動 で起動後, JetBot が自動的に WiFi- に接続される ので OLED に表示される wlan0 の IP アドレスを確 認する.

リモート操作する側の Web ブラウザで以下のよ うに URL を入力する:

http://(JetBot の IP アドレス):8888

JetBot 側の Jupyter Notebook が起動するのでパ スワードを入れて制御用 Python プログラムの編集 と実行を行う.

(5) JetBot のハードウェアの基本動作の確認

Jupyter Notebook で左右のモータの動作や車体 の前後左右の移動を確認するために以下を実行する (図 5): /jetbot/notebooks/basic_motion.ipynb

図 5. Jupyter Notebook で basic_motion.ipynb 実行

以下で具体的なコードを例示すると Robot クラ スのインポートをしてから、インスタンスの初期化 をする. 左モータの 30% を速度で反時計回りに動 かしてから停止させる. time パッケージを利用し て状態を維持する時間を指定する. 左右のモータの 速度を変えて駆動部分の動作を確認する.

```
from jetbot import Robot
```

robot = Robot()

robot.left(speed=0.3)
robot.stop()
import time
robot.left(0.3)
time.sleep(0.5)
robot.stop()
robot.stop()
robot.stop()
robot.left_motor.value = 0.3
robot.right_motor.value = 0.6
time.sleep(1.0)
robot.left_motor.value = 0.0

プログラムと車体の動作が逆の場合は DC モータ の結線を左右入れ替える.ここまでで JetBot の駆 動系の動作確認が完了する.

(6) ゲームパッドで JetBot の移動やカメラの操作

リモート操作する側の機器にワイヤレス・ゲーム パッドを接続して挙動を確認する.例えば, Logicool社のF710をWindows10コンピュータに X Modeに設定してからワイヤレスで接続する.各 ボタンの定義を以下のURLに接続して確認する:

https://html5gamepad.com/

まずは機器の index の値を確認する.本機の場合 1から0へ変更した.また左右のモータの正転・逆 転が,それぞれ AXIS1 と AXIS2 に割り当てられ, カメラの撮影が B5 ボタンに対応していることを確 認する.必要に応じて対応ボタンの変更をソース コードに対して行う.

ワイヤレス・ゲームッドによる JetBot のリモー ト操作による前後左右の移動とカメラによる撮影の 動作を確認するために以下を実行する(図 6):

/jetbot/notebooks/teleoperation.ipynb

ここまでで JetBot に走行コースを試走させて車 体の状態からとるべき制御行動の推論のもととなる

図 6. teleoperation.ipynb で学習データ撮影

学習データを蓄積することが可能となった.

(7) 衝突回避

JetBot のカメラで位置や角度を変えて物体 OB を認識している映像 100 枚と認識していない映像を 100 枚撮影してデータセットを作る (/jetbot/ notebooks/collison_avoidance.ipynb).

リモートの Windows 10 コンピュータ上 Anaconda の Pytorch 環境で Jupyter Notebook を利用できるよ うにする. JetBot で作成したデータセット (/dataset) を転送して同じ collision_avoidance.ipynb を実行でき るようにして高速に学習をさせることで推論用モデル (best_model.pth)を導き出す.

リモート側で得た推論モデルを JetBot へ転送し てから、これに基づき実際の物体 OB への衝突回避 を実行させることができる.これらの一連の流れを フローチャートにしたものが図7である.

おわりに

情報科学系短期大学生が AI 技術の一つであるリ アルタイム画像認識を,自立走行車の設計と実装を 通して理解するためのグループ PBL の教材として, ハードウェアとソフトウェアの総合的な理解につな

がる. 任意に設定されたコースを自律走行の成否が 推論モデルの精度とそれを導くための教師あり学習 のデータの質と量である. 今後任意に設定したコー ス走行を競技(走行時間とコース走行の精度, 学習 速度, 学習データ数を計測比較)することで学生た ちに確認させたいと考える.

引用・参考文献

- 1) JetBot https://github.com/NVIDIA-AI-IOT/ jetbot (2021.3.31).
- 2) JetRacer https://github.com/NVIDIA-AI-IOT/jetracer (2021.3.31).
- Jetson nano https://www.rs-online.com/ designspark/jetson-nano-40-pin-gpio-1-cn (2021.3.31).